DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God
DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 30 Yrs Exp. in the feld of Organic Chemistry. Serving chemists around the world. Helping them with websites on Chemistry.Millions of hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
n

Wednesday 5 September 2012

Preparation of Pentafluorinated Phenyl-Monohydro[60]fullerenes



/preview/synthesis/201216/h0378_ga.gif

 https://www.thieme-connect.de/ejournals/abstract/10.1055/s-0032-1316578
 Wenli Shang et al
 Pentafluorinated phenyl-monohydro[60]fullerenes [C60(Arf)5H] are synthesized in good yields via reaction of the corresponding fluorinated phenyl copper reagent, itself prepared in situ from the fluorinated phenyl Grignard reagent (ArfMgBr) and copper(I) bromide-dimethyl sulfide complex, with [60]fullerene (C60) in 1,2-dichlorobenzene under a nitrogen atmosphere.

Sunday 2 September 2012

NO METAL IN C-H BOND FORMATION

ChemCatChem 20113, No. 05, 827-829

Recently, several research groups have reported that the C-H bond arylation of aromatic compounds with haloarenes can be promoted by potassium or sodium tert-butoxide, without the addition of any exogenous transition metal species. 

These serendipitous discoveries are highlighted and summarized.

Shuichi Yanagisawa, Kenichiro Itami
tert-Butoxide-Mediated C-H Bond Arylation of Aromatic Compounds with Haloarenes

tert-Butoxide-Mediated C-H Bond Arylation of Aromatic Compounds with Haloarenes


NEW BRONZE AGE, Cu Catalysis

Angew. Chem. Int. Ed. 201251, No. 28, 6993-6997


Copper-Mediated and Copper-Catalyzed Cross-Coupling of Indoles and 1,3-Azoles: Double C-H Activation

The described copper-mediated cross-coupling with double C-H activation can provide a convergent access to indole-containing biheteroaryls that are of high interest in pharmaceutical and medicinal chemistry. In this strategy an easily attachable and detachable 2-pyrimidyl directing group is used. Moreover, a variant that is catalytic in copper is achieved by using atmospheric oxygen as an ideal co-oxidant (see scheme).
Mayuko Nishino,et al
Copper-Mediated and Copper-Catalyzed Cross-Coupling of Indoles and 1,3-Azoles: Double C-H Activation

Direct carbonylation of C-H bonds

Direct carbonylation of C-H bonds

Kaname Shibata, ET AL
Ruthenium-Catalyzed Carbonylation of ortho C-H Bonds in Arylacetamides: C-H Bond Activation Utilizing a Bidentate-Chelation System


ChemCatChem, Aug 28, 2012, DOI: 10.1002/cctc.201200352
DOI: 10.1002/cctc.201200352
Direct carbonylation of C-H bonds in arylacetamides was achieved using a bidentate-chelation system. The use of 2-pyridynylmethyl amino moiety is essential for the reaction to proceed. For achieving an efficient reaction, the presence of both ethylene (for a hydrogen acceptor) and H2O (probably for an efficient generation of catalytic active species) are required.

Ruthenium-Catalyzed Carbonylation of ortho C-H Bonds in Arylacetamides: C-H Bond Activation Utilizing a Bidentate-Chelation System

SYNTHESIS OF INDOLES

http://onlinelibrary.wiley.com/doi/10.1002/anie.201203657/abstract

Synthesis of Indoles 

Synthesis of Indoles through Highly Efficient Cascade Reactions of Sulfur Ylides and N-(ortho-Chloromethyl)aryl Amides 
Qing-Qing Yang, ET AL
DOI: 10.1002/anie.201203657
Thumbnail image of graphical abstract


A simple procedure carried out under mild conditions allows the direct and efficient synthesis of structurally diverse indoles. This approach involves a cascade reaction of sulfur ylides and N-(ortho-chloromethyl)aryl amides (see scheme).

Monday 27 August 2012

FROM OPEN ACESS CHEMISTRY-Download ChemDraw Ultra 12.0 for free

Download ChemDraw Ultra 12.0 for free

 

 

 http://www.openaccesschemistry.com/2012/05/download-chemdraw-ultra-120-for-free.html

copy and paste this link on your browser

 

 

enjoy the blog and download

 

 

Monday 6 August 2012

New carbon-carbon bond in an organic reaction with the original functional groups completely disappearing




http://www.nature.com/nchem/journal/v2/n4/full/nchem.576.html
Mundal et al form a New carbon-carbon bond in an organic reaction with the original functional groups completelely dissapearing, boc protected allyl hydrazone, takes part in an triflimide catalysed sigmatropic reaction with subsequent loss of isobutylene, nitrogen gas and carbondioxide

Monday 30 July 2012

Stereochemistry of [n,m] Sigmatropic Rearrangements




Stereochemistry of [n,m] Sigmatropic Rearrangements

Basically, [n,m] sigmatropic rearrangements can proceed through a chair or boat  transition state. Only the chair transition state has been observed experimentally though both are suprafacial and are allowed in 4n+2 electron systems.


Chair and boat transition states in [n,m] sigmatropic rearrangements
Fig.1Chair



Fig.2Boat



Examples for sigmatropic rearrangements with a chair transition state

 Fig.3Cope rearrangement

 



Fig.4[3,3] Sigmatropic

               
                        6 Electrons
                   
                        Hückel aromatic
                   
                        Supra-supra


 view animation, 2D Animation of the Cope rearrangement

try copy paste of link below, do not miss out on a beautiful animation


http://www.chemgapedia.de/vsengine/supplement/Vlu/vsc/en/ch/2/vlu/pericyclische_reaktionen/pericyclisch_sigmatrop.vlu/Page/vsc/en/ch/2/oc/reaktionen/formale_systematik/pericyclische_reaktionen/sigmatrop/stereochemie_n_m.vscml/Fragment/0d47d3304bb08cfd9c68c1c3590965d2-19.html


Large substituents similar to their behavior in chair conformations of cyclohexane rings prefer an equatorial configuration in the transition state of [3,3] sigmatropic reactions. Heating S,S-3,4-dimethyl-1,5-hexadiene to approximately 200°C  yields in 90% a product derived from a chair transition state with equatorial methyl groups.  The product arising from a diaxial conformation is formed in only 10% yield. Obviously, the reaction does not proceed through the boat transition state.

Sunday 29 July 2012

Enantiomeric Ibuprofen via Environmentally Benign Selective Crystallization

 Ibuprofen was developed by the Boots Group, a pharmacy chain in the United Kingdom, in the 1950’s-1960s. It was discovered by Stewart Adams (along with John Nicholson, Andrew RM Dunlop, Jeffrey Bruce Wilson & Colin Burrows). The Boots group originally licensed Ibuprofen to two large drug companies. The first was Whitehall Laboratories (who sold the product as Advil) and the second was Upjohn who used Bristol-Meyers to market their product “Nuprin”. Boots held the patent until 1985 along with the rights to market it until 1986. Afterwards new products entered the market creating multiple new “generic” brands.





Selective crystallization of ibuprofen/lysinate from 1 mol of (R,S)-(racemic) ibuprofen and ≤0.5 mol of (S)-lysine in aqueous ethanol affords either (S)-(+)-ibuprofen/(S)-lysinate or (R)-ibuprofen/(S)-lysinate (in preponderance) depending on the crystallization conditions. The previously unreported temperature selective diastereo-recognition (TSD) provides simple and efficient means to prepare either enantiomer of ibuprofen from (R,S)-ibuprofen utilizing the same commercially available inexpensive resolving agent, (S)-lysine. The unwanted enantiomeric ibuprofen could be recovered from the mother liquor and racemized by a simple, relatively waste-free thermal process. This racemization method when utilized in conjunction with the selective crystallization technology provides a simple, efficient, and eco-friendly means to prepare (S)-(+)-ibuprofen lysinate in an overall essentially quantitative yield. This technology also incorporates the fundamental principle of atom economy (via direct production of the preferred pharmaceutical salt of (S)-lysine). Abstract Image 

Temperature Selective Diastereo-Recognition (TSD):  Enantiomeric Ibuprofen via Environmentally Benign Selective Crystallization

 see also
http://onlinelibrary.wiley.com/doi/10.1002/aic.11087/abstract;jsessionid=D60C69E3DB7266BE103A2875A7FEA6C5.d02t03?deniedAccessCustomisedMessage=&userIsAuthenticated=false
 copy paste on browser

read more at
 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322006000300003
copy paste on browser

Sunday 22 July 2012

Citalopram/Escitalopram Oxalate, Isolation & Synthesis of Novel Impurities, Emcure paper


Citalopram

Citalopram  brand names: CelexaCipramil) is an antidepressantdrug of the selective serotonin reuptake inhibitor (SSRI) class. It has U.S. Food and Drug Administration (FDA) approval to treat major depression, and is prescribed off-label for a number of anxiety conditions.


Escitalopram (trade names NexitoAnxiset-E (India), Lexapro,CipralexSeroplexLexamilLexamEntactLosita(Bangladesh) Reposil (Chile)), is an antidepressant of theselective serotonin reuptake inhibitor (SSRI) class. It is approved by the U.S. Food and Drug Administration (FDA) for the treatment of adults and children over 12 years of age with major depressive disorder and generalized anxiety disorder. Escitalopram is the (S)-stereoisomer (enantiomer) of the earlier Lundbeck drugcitalopram

Citalopram/Escitalopram Oxalate: Isolation & Synthesis of Novel Impurities

READ AT
Emcure Pharmaceuticals Ltd, R & D Centre, Pimpri, Pune -411018, India

Abstract Image

During process optimization of Escitalopram oxalate novel impurities, 6 and 7 were observed, which were isolated and characterized, and the proposed structure was confirmed by chemical synthesis. Investigation of the cause of impurities formation improved the yield and purity of the drug product during the bulk API synthesis

SPECTROSCOPIC DATA IS AVAILABLE IN SUPPORTING INFORMATION FILE IN THE PAPER

ARTEMETHER, A FORCE AGAINST MALARIA




Artemether  
is an antimalarial for the treatment of multi-drug resistant strains offalciparum malaria. It is combined with Lumefantrine and sold by Novartis under the brand names Riamet and Co-Artem.


It is a methyl ether derivative of artemisinin, which is a peroxide lactone isolated from theChinese antimalarial plant, Artemisia annua. It is also known as dihydroartemisinin methyl ether, but its correct chemical nomenclature is (+)-(3-alpha,5a-beta,6-beta,8a-beta, 9-alpha,12-beta,12aR)-decahydro-10-methoxy-3,6,9-trimethyl-3,12-epoxy-12H-pyrano(4,3-j)-1,2-benzodioxepin.


Artemether is highly effective against the blood schizonts of both malarial parasites P. falciparum and P. vivax. It is applied in combination with lumefantrine in clinical treatments of malaria
World Health Organization guidelines for the treatment of uncomplicatedfalciparum malaria recommend the use of this artemisinin-based combination therapy, and approved by Swissmedic in December 2008 and recently approved by the United StatesFood and Drug Administration.

Abstract Image

READ AT
http://pubs.acs.org/doi/abs/10.1021/op300037e

A 70% overall yield from the two-step conversion of naturally or synthetically derived artemisinin to pure β-artemether is obtained. This corresponds to a usage factor of 1.35 kg of artemisinin needed to produce 1 kg of β-artemether, compared to the current industry average of 1.59 kg.

Saturday 21 July 2012

Kharasch-Sosnovsky Reaction:


Kharasch-Sosnovsky Reaction:
copper catalysed allylic oxidation using an organic peroxide.
reported by M. S. Kharasch and George Sosnovsky in 1958 ((DOIDOI).
In the original publication the reactants are cyclohexene
and t-butyl perbenzoate with cuprous bromide and the
reaction product is cyclohex-1-en-3-yl benzoate:
 

Mechanism: (review: DOI). The reaction mechanism devised
by Beckwith et al (DOI) contains the following steps:

 


THANKS AND REGARD'S
DR ANTHONY MELVIN CRASTO Ph.D
MOBILE-+91 9323115463
GLENMARK SCIENTIST , NAVIMUMBAI, INDIA
web link

Monday 16 July 2012

[3,3]-sigmatropic rearrangement to transfer an allyl group to the imminium carbon


[3,3]-sigmatropic rearrangement to transfer an allyl group to the imminium carbon
REACTION MECHANISM
Starting point is to react the secondary amine with the aldehyde to form a cyclic imminium structure. Once generated, this is nicely set up to undergo a [3,3]-sigmatropic rearrangement to transfer an allyl group to the imminium carbon. The resulting formaldehyde imminium product is then hydrolyzed in the presence of water to afford the product plus an equivalent of formaldehyde





closer inspection, you can see that there is one less carbon in the product than the starting material. Furthermore, there are no reducing agents present, only acid (and presumably water)
 icon 

Thursday 12 July 2012

ENZYMATIC DIELS ALDER REACTION

Science Clipart


In a ground-breaking feat of protein engineering, US researchers have designed a synthetic enzyme that catalyses the Diels-Alder reaction - something that has not been seen in nature. The reaction is key to many organic syntheses and suggests that artificial enzymes could soon become part of the synthetic chemist's toolkit.

Catalysed Diels-Alder reaction

The Diels-Alder reaction - diene and dienophile undergo a pericyclic [4 + 2] cycloaddition to form a chiral cyclohexene ring. The image also shows the design target active site, with hydrogen bond acceptor and donor groups activating the diene and dienophile and a complementary binding pocket holding the two substrates in an orientation optimal for catalysis

Science
Vol. 329 no. 5989 pp. 309-313 
DOI: 10.1126/science.1190239

Monday 9 July 2012

Eugenol -------major volatile constituent of clove essential oil


Eugenol—From the Remote Maluku Islands to the International Market Place: A Review of a Remarkable and Versatile Molecule


Eugenol is a major volatile constituent of clove essential oil obtained through hydrodistillation of mainly Eugenia caryophyllata (=Syzygium aromaticum) buds and leaves. It is a remarkably versatile molecule incorporated as a functional ingredient in numerous products and has found application in the pharmaceutical, agricultural, fragrance, flavour, cosmetic and various other industries.

Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa

read original article at



DR ANTHONY CRASTO
shark

Saturday 7 July 2012

Ruthenium catalyst to carry out a cross coupling of an aryl amine with a phenyl boronate

Abstract Image


Ruthenium-Catalyzed Carbon−Carbon Bond Formation via the Cleavage of an Unreactive Aryl Carbon−Nitrogen Bond in Aniline Derivatives with Organoboronates

Satoshi Ueno, Naoto Chatani, and FumitoshiKakiuchi
Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan, and Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
J. Am. Chem. Soc.2007129 (19), pp 6098–6099
 Ueno, Chatani and Kakiuchi used a ruthenium catalyst to carry out a cross coupling of an aryl amine with a phenyl boronate. What is remarkable is the fact that the transition metal did oxidative addition to an aryl-nitrogen bond

http://pubs.acs.org/doi/abs/10.1021/ja0713431

Sunday 1 July 2012

JOIN MY GROUP ORGANIC PROCESS DEVELOPMENT

Source of anticancer agents---Broccoli



Broccoli as a source of anticancer agents

Most of the people are aware of healthy benefits of broccoli but the active constituents which makes broccoli to possess anticancer property may not be well known., The anticancer effect of Selenium (Se)-enriched broccoli will be highlighted according to the work done by researcher from Gunma University, Japan (Abdulah, et al.).

As a member of Se-accumulator Brassica family, broccoli accumulates Se-methylselenocysteine as the major Se compound when it is germinated in Se-enriched media. Therefore, Se-enriched broccoli accumulates two active anticancer agents: sulforaphane and Se-methylselenocysteine. The anticancer property of Sulforaphane, belonging to isothiocyanates and Se-methylselenocysteine has already been reported (Nishikawa, et. al, and Kim et. al. respectively).
Recently, broccoli sprouts have received considerable attention, because they contain ten times more sulforaphane than broccoli florets. Many studies have shown that both cruciferous vegetables and selenium may reduce the incidence of prostate cancer. 
References
1. Abdulah, R., Faried, A., Kobayashi, K., Yamazaki, C., Suradji, E. W., Ito, K., Suzuki, K., Murakami, M., Kuwano, H., Koyama, H. BMC Cancer2009, 9, 414.
2. Kim, T., Jung, U., Cho, D. Y., Chung, A.-S. Carcinogenesis2001, 22, 4, 559-565.
3. Nishikawa, T., Tsuno, N. H., Tsuchiya, T., Yoneyama, S., Yamada, J., Shuno, Y., Okaji, Y., Tanaka, J., Kitayama, J., Takahashi, K., Nagawa, H. Ann Surg Oncol. 2009, 16, 534–543.

Tuesday 26 June 2012

Recent Progress in the Use of Vilsmeier-Type Reagents


Recent Progress in the Use of Vilsmeier-Type Reagents

Organic Preparations and Procedures International: The New Journal for Organic Synthesis Volume 42, Issue 6, 2010                   

DOI:10.1080/00304948.2010.513911
Weike Sua, Yiyi Wenga, Ling Jianga, Yanyan Yanga, Linyao Zhaoa, Zhiwei Chena, Zhenhua Lia & Jianjun Lia pages 503-555
Available online: 15 Nov 2010
a  Weike Su, Key Laboratory of Pharmaceutical Engineering of
Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology,
Hangzhou 310014, P. R. China. E-mail: Pharmlab@zjut.edu.cn


FIND AN EXCELLENT REVIEW, IT IS FREE TO DOWNLOAD AT


Vilsmeier-Haack reaction mechanism

Friday 15 June 2012

A New Bidesmoside Saponin from the Bark of Guaiacum officinale


A new bidesmosidic triterpene saponin, guaianin P was isolated from the stem bark of
Guaiacum officinale. Its structure was established as oleanolic acid 3-O-{α-L-rhamnopyranosyl-
(1→3)-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-α-L-arabinopyranoside}-28-O-
β-D-glucopyranosyl ester by spectroscopic and chemical

http://jcsp.org.pk/index.php/jcsp/article/viewFile/4177/2961  is the link
J. Chem.Soc.Pak., Vol. 34, No. 2, 2012 BY
NIKHAT SABA et al.,
RASHEEDA KHATOON, ZULFIQAR ALI and VIQAR UDDIN AHMAD
KARACHI
Guaianin P  is very nicely described
https://docs.google.com/viewer?url=http%3A%2F%2Fprr.hec.gov.pk%2FChapters%2F612-0.pdf
Above link gives the structures


-- 
ANTHONY MELVIN CRASTO
THANKS AND REGARD'S
DR ANTHONY MELVIN CRASTO Ph.D
MOBILE-+91 9323115463
GLENMARK SCIENTIST , NAVIMUMBAI, INDIA
web link
http://anthonycrasto.jimdo.com/
http://www.anthonymelvincrasto.yolasite.com/ 
http://www.slidestaxx.com/anthony-melvin-crasto-phd 

Congratulations! Your presentation titled "Anthony Crasto Glenmark scientist, helping millions with websites" has just crossed MILLION views.
アンソニー     安东尼   Энтони    안토니     أنتوني

Tuesday 12 June 2012

High-Yielding Semi-Synthesis of an Artemisinin Precursor


High-Yielding Semi-Synthesis of an Artemisinin Precursor

“Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin” Westfall, P.J.; Pitera, D.J.; Lenihan, J.R.; Eng, D.; Woolard, F.X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D.J.; Owens, A.; Fickes, S.; Diola, D.; Benjamin, K.R.; Keasling, J.D.; Leavell, M.D.; McPhee, D.J.; Renninger, N.S.; Newman, J.D.; Paddon, C.J. Proc. Natl. Acad. Sci. U.S.A. 2012109, E111-E118. DOI: 10.1073/pnas.1110740109.
Malaria, caused mainly by the parasite Plasmodium falciparum, leads to nearly a million deaths and 250 million new infections each year. The sesquiterpene lactone endoperoxide artemisinin, derived from Artemisia annua, is very effective as an antimalarial drug, and widespread resistance hasn’t yet developed. Artemisinin is the only high-volume drug that is still isolated by extraction from its native plant producer in a low-yielding (around 10 μg per g plant material), resource-intensive process that uses volatile solvents (most commonly hexane).
Artemisia annua. 
As a result, supplies of the drug are short, and those who need it often can’t afford it. The development of new processes for artemisinin production would therefore advance both public health and green chemistry interests. Total synthesis of the drug hasn’t been considered as a viable alternative because of low yields, but a lot of effort has been directed toward developing semi-synthetic sources of artemisinin using a combination of microbial fermentation and chemical synthesis. Toward this end, theKeasling lab reported a few years ago that they had constructed a biosynthetic pathway for the artemisinin precursor amorpha-4,11-diene in yeast with yields of ~200 mg/L—already impressive given the complexity of the molecule. Amorphadiene synthase (ADS) comes from Artemisia annua; the rest of the genes are from yeast.